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MEASUREMENT OF THERMAL DIFFUSIVITY

Equipment is to be assembled to test the feasibility'of

the methods proposed to measure the thermal diffusivity of the

- *::7ar surface material. This measurement is to be made directly on

the surface and also within a drilled hole. This present report
outlines the design calculations for this instrumentation, review-

ing the several optional designs.

Surface Measurement

At surface, the thermal diffusivity is to be deduced from
the change in temperature experienced within a region of known geome-
try as a result of abruptly altering the incoming radiation withia
this region. This change in the incoming radiation can be the
result of either shining an infrared lamp on the desired area, or
abruptly shielding the surface from direct solar radiation. It 1is
necessary to estimate the shield dimensions or, optionally, the lamp
dimensions and power, to give measurable temperature changes for a
diffusivity measurement. At this point it is not necessary to
solve exactly the heat flow equations for the specific situation
existing during the diffusivity measurement on the lunar surface.
Rather, one can select a system which approximates the lunar con-
ditions a=d obtain, rather easily, solutions of sufficient accuracy
for engineering design. This treatment for the surface diffusivity
determination is given in Appendix A. The conclusions reached in
this treatment are as follows: '

1. Measurement of thermal diffusivity can be accomplished on

surface by the use of a shield system having a radius of
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about 1l cm., or by use of a lamp system irradiating an
area of surface having a radius of at least 11 cm.

2. The depth of surface affected by this treatment is on
the order of 4 cm. in the time periods required for
measurement,

3. Wwith radiometer sensitivities available it is not
practical to attempt a measurement to separate thermal

conductivity from thermal diffusivity.

Downhole Measurement

The basis of study of downhole equipment is given ia
Appendix B, but the work has not progressed to the point allowing

conclusions or data to be reported.
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'APPENDIX A

DESIGN CALCULATIONS FOR SURFACE THERMAL DIFFUSIVITY DETERMINATIONS

For the design of the surface thermal diffusivity appara-
tus, the system to be considered is a “semi-infinice™ region z > 0
initially at zero temperature throughout z > O. Carsiaw and Jaegerl
treats these systems for various heating geometries at the surface
= 0. The Carslaw and Jaeger solution for a supply of heat at the
rate of q calories per unit time per unit area for t > 0 over the
circle x2+ y® ¢ a®, z = 0 evaluated at the point (0, 0, z) 1is

_ terfe

1/2 2 1/2
2
- 0D ( gerre A(:(;);,z } @

E2
- &£ exfc €, and erfc € =

‘ Note that ierfc € = —T}-z- e
.

l-erf €, so that

2q (ot 1 Rt - z £ z |
o - BT (hy FF - iy ente iy
(2)
2
.1 é%a%'a— + (z2+ a2)1/2 -rfc(zz+ 32)1,2 ).
177 2(e0) /2 _172"2(00

L

Evaluated at z = 0, equation (2) becomes,

IConduction of Heat in Solids, H. S. Carslaw and J. C. Jaeger,

Second Edition, Oxford at the Clarendon Press, 1959
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| So far this has been straightforward manipulation of the
Carslaw and Jaeger solution, and in this form it gives the tempera-
ture, 8, at the center of a circle, radius a, as a function of time,
t, for a medium (semi-infinite) z > 0 initially at zero temperature
throughout, having a heat input over x2 4 yz < a? of q calories per
cm2 per second (no heat flow over the rest of the boundary z = 0),
having thermal conductivity K and thermal diffusivity ¢ = ;!:
(where p 1s density, c¢ 1s specific heat).

This particular solution is now to be used in various ways
to estimate necessary shield dimensions and manipulations, or,
optionally, infrared lamp powers and manipulations, to accomplish
the measurement of thermal diffusivity at the surface.

The first point considered is the radius of affected area,
a, necessary to give measurable temperature differences in reasomn-
able time periods. A radiometer viewing a total included angle
of 22° from 1 fr. above surface is averaging temperatures over an
area having a radius 30 tan 11°® = 5.8 cm. The specification for

the affected area must say that over the area viewed by the radio-

‘meter the temperature change 6 is constant in reasonable time

periods. It seems obvious that as K goes to zire more abrupt changes

1:794.28-A2
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in 0 would appear at the boundary and a uniform temperature (in terms

of the space variables) vould appear over the ares x4 ’2 < az. The

dimension, &, will be deduccd for the highest value of conductivity
expected, anticipating that it will then be usable for all lower

values. The specification for the highest value of thermal com-

calories
cm.sec. . If the

surface is a material having density and specific heat approximating

ductivity expected on the lunar surface 1is 104

the values for sand, pc = 0.4. It is necessary to consider also

the case of a low density material, so arbitrarily a pc value = 0.04
{s also to be taken. From the Carslaw and Jaeger solution (Eqn. &)
values of "a" will be determined at which, for ranges of a and t, @
is independent of a. (No claims will be made for the rigor of any

of the following ttentnents.) It can be reasoned that 0 is

| independent of a when o * 2fuc << 1, with the additional condition
that

2
It exte —2p7y < Mﬁr

| leaving an expression for @ in which "a" does not appear

1/2 :
2q (ot
0=—i-(—-[}1—. - ()

v

It remains to establish the values of a, a, and t for which these

conditions hold. Taking the original expression, Eqn. 4, and

1 ’
rewr ting , o 1/2 . -aZ/l‘% a ".1/2 ] a l .
9 = —i‘;r}z—- {l-e + ;Z;;;I77 erfc 3222;172 . (6)
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Considering only the function within ([ }, it takes the form,

2 L
1- et 4 o1/2 ¢ erfc ¢, ‘ )
vhere
¢ - a .
2(@)”2

Values of this function were computed for several values of £ and
its behavior is shown in Fig. 1. For practical purposes this

function becomes unity for values of € > 2.5. Therefcrse, for

- —2 2.5,
€ ;2;;;172’>

1/2

0 = %iff%}z- s an expression independent of 3. . (8)

1f k - 1078 Salorles .. . 0.4, then o - 2.5x107

cmzlsec. If K = 107% %ﬁ%%é%%eb » pc = 0.04, then a = 2.5x10"3
cmzlsec. In later sections it will be demonstrated that for

a = 2.5x10"% cm?/sec. a measurement of thermal diffusivity can be
made in 4000 sec., and for a = 2.51:10°3 cnzlsec., a measurement can
be made in 400 sec. In each c&se the product ot = 1. In order

a
that ;z;;;r7z > 2.5 for each of the above cases a > 5 cm. The

temperature change at the center of a circle, radius = 5 cm. 1is
independent of the radius if the medium has a thermal diffusivity
less than or equal to 2.5x107% cnzlsec. and the temperatures are

measured for times less than 4000 sec. This is aiso correct within
1:794.28-A4
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this radius of 5 cm. if the medium has a thermal diffusivity equal

3 cnzlsec. and the temperatures are measured for times

to 2.5x1Q°

less than 400 sec. Earlier in the discussion the point was made

that the radiometer for temperature measurement would be viewing

a circle of radius about 6 cm. For this radius to enclose a regioa

of temperature independent of the boundaries, the area in which

incoming radiation is altered must be a circle of radius greater

than 6 + 5 = 11 cm. Fig. 2 will af{d in understanding this reasoning,

remembering that the inner 6 cm. radius circle 1s viewed by the

radiometer, ard the 5 ca. circles {llustrate the extent of area

within which, for these time limits, the temperature has radius as

a parameter. Every point on the circumference of the circle

enclosing the radiometer view i{s a minimum of 5 cm. from the

boundary of the area affected, which should give within the view of

the radicmeter temperatures unaffected by radius as a parameter.
Similar reasoning will allow an estimate of depth affected

during this measurement. Going back to one of the original

equations, Eqn. 2, evidence has been given that, at z = 0, for

ot = 1 all terms including'a'effectively disappear for values of

a >S5 cm. Going to the case for ot = 1, at z # 0, it is obvious that

all terms including 'a’remain negligible for values of a > 5 cm.,

leaving, )
‘ /2 "% /4
2q(at) e z z
0 - % ( . T - 2(0;)1/2 erfc W }. (9)
2

-€
The expression within [ } is the function 5172 -£ erfc €
£ t »
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as plotted in Fig. 1, which goes to a negligibly small value near
¢ - —Epm -2,
2(at)

For the case at { 1, z = 4 cm. is the maximum depth affected by the
alteration at surface, independent of the radius of affected area.
It is now possible to estimate temperature histories at the point
(0, 0, 0) which is the center of the area of altered radiation.

Evidence has been given that, for at ( 1, a > 5, Equation 4 reduces

: 1/2 ,

where 0 is the temperature change noted at (0, 0, G) at.tine. t,

to

for an input of heat of q calories per cm? per sec. for a semi-
infinite medium, z > 0, initially at unfform temperature throughout
and having a value of thermal diffusivity @ = ;53 such that at ¢ 1.
This reduced equation is the exact equivalent of the solution as
given by Carslaw and Jaeger for a constant flow of heat over the
plane z = 0 into a semi-infinite medium and this similarity in foram
serves as a check of the method.

For the siiuaiion to be examined, q in Equatioan (5) 1is the
result of abruptly altering incoming radiation, so that é balance
of heat flow must be re-established at the surface. rig. 3 is a
rough sketch of a small portion of surface illustrating incoming

radiation, q;> 2 portion of which is absorbed, 9, the surface

reradiating energy as a function of its emissivicy and temperature,

93 = oeTA, and being supplied heat from the semi-infinite medium

1:794.28-A6
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q,- For a change in conditions, since finite quantities of heat are
absorbed or released by the medium materials in changing tempera-~
ture, the time required for arrival at a new equilibrium state is

. governed by certain med{um properties, including thermal conductivity,
and specific heat. The reduced Equation (5) gives a means of esti-
mating the effect of these properties. The value of q to be used in
this equation is to be a net energy transfer at the surface, 9 - 43
which is a function of surface temperature (q3 - aeTk). Fig. &

plots the net heat interchange values for three cases of interest.
These cases differ in the method of altering radiation on surface.

To make use of the variable heat interchange associated with altering
the incoming radiation, Equation (5) is set up in a difference form,
realizing that, lacking aﬁ analytic solution including a variadble
heat function, the assumption will be made that Equation (5) can be
applied at successive times with q taken to be a function of
temperature. This gilves, -

) |
091 = Ty [Lense}2-(ata-1) ae3/2) (10)
68 = ool (o120 12 (o y1i2), | (11)

which relates the change in temperature, AOn, in a time step, At,
to the properties of the medium, the net heat interchange existing
at the beginning of the step, q,_;, and the number of steps taken.
By use of the data of Fig. 4 and the difference equation were

obtained the curves of Figs. 5, 6, and 7 illustrating the temperature

1:794.28-A7
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histories at the center of an area of altered radiation for the con-
ditions noted. It should be possible in any of these cases to
deduce thermal diffusivity with falr accuracy, perhaps within about
10%, having obtained radiometrically the temperature history. A
more exact statewment of precision available can be made after

. operating characteristics of the radiometers are know, but it 1is
presumed that temperatures will be known to withim $5°C. The
curves of Figs. 5, 6, and 7 give supporting evidence for the
previous statement that the measurement of thermal diffusivities
can be accomplished in values of at < 1. Going back to the original
Carslaw and Jaeger solution for the point (0, 0, 0),

1/2 2
2q(at -a%/4ae
0 = - (1-"% ) +qa erfc ;z——;r72 . %)

2 n,2an
Note that for e'} may be substituted the series z:.o.(.:'l? £

n
performing this substitution gives,
2 &
2 1/2 1/2 a a
= [ -(ot { 1-
;U%F (ee) 7= o) R )
6
- -—;3-3‘ 2 erf a 12
"N + 11 + 3% erfe ;2;;;172 (12)
i 2 & 6
2 a a2 a
0 = —%77_ - +  heee
x g S.(mc)”’ 32(0t) 32 384(at)>!? )
+ L2 erfe ———3—172 » (13)
K 2(at)
thus, as t - =» ® -031-‘- (14)
1:794.28-A8
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Accepting this as the steady state condition after long time periods,
it 1s now possible to estimate the feasibility of determining the
thermal conductivity of the surface materials, as distinguished

from thermal diffusivity. In the equation, @ = ﬂi5 s the net heat
interchange q, at the surface is given by O(T:utface - T:hield) if
the use of the shield is assumed. Using T .14 = 300°K, assuming
the original surface temperature to be 400°K, the radius to be 10
cm., and computing the equilibrium condition by a trial and error
 procedure, it is found that the surface temperature falls within

7°C of the shield temperature at equilibrium for a conductivity

K = 1074 calories/cm. sec. °C, and that for K g_l()'s the surface
temperature {s withiﬁ 1°C of the shield temperature. With the
radiometer precision available it is no: possible to discriminate
conductivities by this method. This tendency for the low conductivity
material to come to radiative equilibrium with an applied source
holds also for the cases where a point source of infrared is used

(e.g., lamps), therefore, it is felt that only a measurement of

thermal diffusivity is practical on the surface.

1:794,28-A9
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APPENDIX B

DOWNHOLE DETERMINATION OF THERMAL DIFFUSIVITY

To estimate the thermal diffusivity from within a hole
bored into the lunar body, a small blackbody radiator is ‘ 3
attached to the bottom of the sonde. With a constant power input w
to this blackbody an increase in temperature with time will be noted, ‘
this temperature increase being a function of the conduction of heat !
away from the source along leads and supports, storage of heat ia ‘
the sonde and blackbody materials, radiation of heat between black-
body surface and borehole wall, storage of heat within the lunar
body, and conduction of heat away from the borehole through the
~ lunar materials.

The design of the blackbody system is being done empiri-
cally, but as a start an investigation of shape factors was made for
heat sources in insulating unconsolidated materialé. As a means of
prediction, use was made of the Carslaw and Jaeger1 solution for

the continuous spherical source within an infinite medium,
172 -(r-a)2 -(r+a)2
at Gat dat
0 = Tpcara [2(—;) (e -e ]

- k-a erfe ‘;T:—)Jm + (r+a) erfc Z—(i-'i;vz ], (1)

with a constant rate of heating of q calories over the surface of
a sphere of radius a starting at t = 0, the spherical source being

in an infinite medium of density, p, specific heat ¢, and thermal

lconduction of Heat in Solids, H. S. Carslaw and J. C. Jaeger,
Second Edition, Oxford at the Clarendon Press, 1959, pp 263.
1:794.28-B1
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diffusivity a = K (K = thermal conductivity), giving the tempera-

p c
ture rise O at distance r as a function of time, t. Evalusting this

solution for r = a,

2
1/2 2.
at at
0 = ;;;g;:z (2= [1-e ")+ 2a erfec 2;;?!72]' (2)
(o)< e /% ey _ a
e 'Zﬁgcca {3 . ]} [1-e +-<—=‘-:-)-m=rfc ?;;17'2'"(3)
Setting § = —2pry ,
(at)
2
0 = 2;373;::; {%J [1-e~¢ & «1/2 ¢ erfc t]. | (%)

2 4,
+ ¥ € erfc £) 1is plotted in Fig.

The function<% (l-e'g
8. Use of this equation allows prediction of heating curves for a
spherical source in media of known properties. By use of the origi-
nal equation it is proven easily that a surrounding medium giving
a covering 25 cm. thick in every dimension is effectively an
infinite medium for values of at ¢ 20, and for values of q = 0.25
calories per second.

Three shapes were selected for study on the basis of sonde
requirements for dimensions and configurations and were prepared im
copper drilled out to give equal masses of metal. The heating
element placed in each was a 2 watt, 100 ohm, carbon resistor

"potted” in place with epoxy. Iron constantan thermocouple wires

measure the temperature rise at selected points. Table I gives the

1:794.28-B2
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data on each of the three shapes, Fig. 9 shows the configuration, and
Figs. 10, 11, and 12 show comparison with the Carslaw.an& Jaeger
prediction of the heating in media of different conductivities. For
the two shapes which are not spherical the predicted temperature

rise is computed from the Carslaw and Jaeger solution for a spherical
source, taking a value for radius which is the radius of a sphere
having equal surface area. In the extension of this study the

effect of borehole and coupling to sonde will be simulated by work-
ing in evacuated glass tubing buried in media of differing con-
ductivity. This, it should be emphasized, will allow a sufficiently
good design prediction, but more exact work is required in the

calibration.
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FIGURE 9

SHAPES SELECTED FOR HEAT SOURCE STUDIES
I. SPHERE

2.22 cm.

II. CYLINDER

N

2.23 cm.

I1I. CYLINDER - CONE

st

X
1.26 cm.

> —i

v 1.92 ca.
> i
x !
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